Mathematical Finance
Dylan Possamai

Assignment 10

Variance swap hedging by using liquid call options

Fix some horizon T' > 0. We consider a filtered probability space (Q, F,F = (F¢)o<t<7, Q), where Q is directly assumed
to be a risk-neutral measure, under which the dynamics of the unique risky asset S is given by

t
S, = So +/ S,0,dB2, t €0,T),
0

where Sy > 0, where B? is an (F,Q)-Brownian motion, and where the process (0¢)tejo,r) is an F-adapted process
satisfying o < oy <7, ,¢ € [0,T], for some constants 0 < ¢ < & < +o0o0. We assume that the interest rate is constant
and equal to 0 for simplicity. The first goal of this exercise is to price and hedge the random leg of a so-called variance
swap with maturity 7', whose payoff is given by
1 (7
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for some function ¢ : Ry — R that you will explicitly determine.

1) By using Ité’s formula, show that

and verify that

2) Deduce from the previous question a replication strategy for an option with maturity 7" and with payoff % foT atdB;@.

3) We assume in this question that it is possible to sell in the market, at the price p, a European option with maturity
T and with payoff log(St) (this is called a log-contract). How can you then replicate and hedge Jr? Prove that the
price of this hedge is given by

2

T(log(So) -p).

4) We assume from now on that we can buy and sell dynamically a European call with maturity 7" > T and strike Sp.
Explain why its price P; at any time ¢t < T is given by

P, =E%[(Sp — So)*|F].

5) We assume now that the dynamics of o is of the form
t
s =aut [ p(Su0u) (@B +ndW),
0

where 09 > 0,7 >0, ¢ : R; xR, — R, is a continuous and bounded function, and W is another (F, Q)-Brownian
motion, independent of B®. Explain why there exist functions p : [0,7] x R, x R, and v : [0,T] x R, x Ry such
that

P = p(t, St,O't), EQ [lOg(ST)‘]:t} = U(t, St,O't), te [O,T]



6) We assume that the functions p and v of the previous question are smooth. Verify first that if we define the following

two-dimensional vectors 0
- Sy Q . _ By
X, = (0t>’ and By = (WtQ , t€10,7T],

— (%0 Y(OXix: 0 .
Xt - (UO) +/O (SD(X;7X52) nSO(XSl,Xg) dBS’ te [OaT]a

where for i € {1,2}, X; denotes the ith coordinate of the vector X;.

we can then write

Then, using It6’s formula, prove that for any ¢t € [0, 7]
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and
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7) Explain why (p(t, S¢,0¢))iejo,r) and (v(t, St, 0t))tejo,r) are (F, Q)-martingales, and deduce that
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8) Deduce that in order to replicate the payoff log(St), one should hold at each time ¢ € [0, 7] a quantity ¥; of options
with payoff (S — So)™, where

\I/t — %(t St; Ut) ’
aig(t Sta Gt)

as well as A, risky assets S, where

v (St,O't) ov
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9) How can we hedge dynamically Jr by using the risky asset and the call (and thus not the log-contract)? Prove that
the price of this hedge in terms of Sy and v(0, Sy, 0¢) is given by

%(log(SO) — (0, So,00)).

What partial differential equation does the function v satisfy?



10) We consider now a so—called weighted variance swap with maturity 7' and continuous weight function w : Ry — Ry,
for which the random leg’s payoff is given by

1 /7
Jp = T/o o2w(S;)dt.

Define for some fixed zg > 0 the function F: Ry — R by F(z) := [ [* 20(2) 42dy. Prove that

xo Jxg T2z2

T
i = F(Sr) — F(So) - /0 F(S,)dS:.

11) How can you hedge J¥, without knowing o, by simply using cash, Call options, Put options and the risky asset S?



